With the advanced request to employ a team of robots to perform a task collaboratively, the research community has become increasingly interested in collaborative simultaneous localization and mapping. Unfortunately, existing datasets are limited in the scale and variation of the collaborative trajectories, even though generalization between inter-trajectories among different agents is crucial to the overall viability of collaborative tasks. To help align the research community's contributions with realistic multiagent ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor sequences that each exceed 200 seconds, consisting of well temporal synchronized and spatial calibrated high-frequency IMU, high-quality stereo camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous attempts regarding dataset size, scene variability, and complexity. It has 4x as much average recording time as the pioneering EuRoC dataset. We also provide careful dataset analysis as well as baselines for collaborative SLAM and single counterparts. Data and more up-to-date details are found at https://github.com/PengYu-Team/S3E.
translated by 谷歌翻译
Face Animation是计算机视觉中最热门的主题之一,在生成模型的帮助下取得了有希望的性能。但是,由于复杂的运动变形和复杂的面部细节建模,生成保留身份和光真实图像的身份仍然是一个关键的挑战。为了解决这些问题,我们提出了一个面部神经量渲染(FNEVR)网络,以充分探索在统一框架中2D运动翘曲和3D体积渲染的潜力。在FNEVR中,我们设计了一个3D面积渲染(FVR)模块,以增强图像渲染的面部细节。具体而言,我们首先使用精心设计的体系结构提取3D信息,然后引入一个正交自适应射线采样模块以进行有效的渲染。我们还设计了一个轻巧的姿势编辑器,使FNEVR能够以简单而有效的方式编辑面部姿势。广泛的实验表明,我们的FNEVR在广泛使用的说话头基准上获得了最佳的总体质量和性能。
translated by 谷歌翻译
从相机中检测3D车道是自动车辆的一个上升问题。在此任务中,正确的相机姿势是生成准确通道的关键,可以将图像从透视图转换为顶视图。通过这种转变,我们可以摆脱透视效果,使得3D车道看起来相似,可以精确地装配低阶多项式。然而,主流3D车道探测器依赖于其他传感器提供的完美相机姿势,这是昂贵的并且遇到多传感器校准问题。为了克服这个问题,我们建议通过用双级框架估计来自单个图像的摄像机姿势来预测3D车道。第一阶段针对从透视图图像的相机姿势任务。为了提高姿势估计,我们介绍了辅助3D车道任务和几何约束,从多任务学习中受益,这增强了3D和2D之间的常规,以及在上述两个任务中的兼容性。第二阶段针对3D Lane任务。它使用先前估计的姿势来生成包含距离不变通道外观的顶视图,以预测准确的3D车道。实验表明,如果没有地面真相相机姿势,我们的方法优于最先进的完美相机姿势的方法,并且具有最少的参数和计算。代码在https://github.com/liuruijin17/clgo提供。
translated by 谷歌翻译
在这项工作中,我们试图通过设计简单和紧凑的条件领域的逆势培训方法来解决无监督的域适应。我们首先重新审视简单的级联调节策略,其中特征与输出预测连接为鉴别器的输入。我们发现倾斜策略遭受了弱势调节力量。我们进一步证明扩大连接预测的规范可以有效地激励条件域对齐。因此,我们通过将输出预测标准化具有相同的特征的输出预测来改善连接调节,并且派生方法作为归一化输出调节器〜(名词)。然而,对域对齐的原始输出预测的调理,名词遭受目标域的不准确预测。为此,我们建议将原型空间中的跨域特征对齐方式而不是输出空间。将新的原型基于原型的调节与名词相结合,我们将增强方法作为基于原型的归一化输出调节器〜(代词)。对象识别和语义分割的实验表明,名词可以有效地对准域跨域的多模态结构,甚至优于最先进的域侵犯训练方法。与基于原型的调节一起,代词进一步提高了UDA的多个对象识别基准上的名词的适应性能。
translated by 谷歌翻译
Neural network pruning has been a well-established compression technique to enable deep learning models on resource-constrained devices. The pruned model is usually specialized to meet specific hardware platforms and training tasks (defined as deployment scenarios). However, existing pruning approaches rely heavily on training data to trade off model size, efficiency, and accuracy, which becomes ineffective for federated learning (FL) over distributed and confidential datasets. Moreover, the memory- and compute-intensive pruning process of most existing approaches cannot be handled by most FL devices with resource limitations. In this paper, we develop FedTiny, a novel distributed pruning framework for FL, to obtain specialized tiny models for memory- and computing-constrained participating devices with confidential local data. To alleviate biased pruning due to unseen heterogeneous data over devices, FedTiny introduces an adaptive batch normalization (BN) selection module to adaptively obtain an initially pruned model to fit deployment scenarios. Besides, to further improve the initial pruning, FedTiny develops a lightweight progressive pruning module for local finer pruning under tight memory and computational budgets, where the pruning policy for each layer is gradually determined rather than evaluating the overall deep model structure. Extensive experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art baseline approaches, especially when compressing deep models to extremely sparse tiny models.
translated by 谷歌翻译
图形神经网络(GNNS)由于图形数据的规模和模型参数的数量呈指数增长,因此限制了它们在实际应用中的效用,因此往往会遭受高计算成本。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点功能维度,存在大量冗余。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图周期修剪范式上进行动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。提出的CGP通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度散发模型(SGC和APPNP)以及Deep Models(GCNII和RESGCN),总共有14个真实图形数据集,包括来自挑战性开放图基准的大规模图数据集。实验表明,我们提出的策略在匹配时大大提高了训练和推理效率,甚至超过了现有方法的准确性。
translated by 谷歌翻译
几乎所有的多代理强化学习算法没有交流,都遵循分散执行的集中培训原则。在集中培训期间,代理可以以相同的信号为指导,例如全球国家。但是,在分散执行期间,代理缺乏共享信号。受到观点不变性和对比学习的启发,我们在本文中提出了共识学习,以学习合作的多代理增强学习。尽管基于局部观察结果,但不同的代理可以在离散空间中推断出相同的共识。在分散执行期间,我们将推断的共识作为对代理网络的明确输入提供了,从而发展了他们的合作精神。我们提出的方法可以扩展到具有小模型更改的各种多代理增强学习算法。此外,我们执行一些完全合作的任务,并获得令人信服的结果。
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
无人驾驶航空公司(I-U-U-U-U-U-U-U-U-UV)的互联网承诺通过无人机之间的有效合作,快速,强大,经济高效地完成传感和传输任务。为实现有前途的好处,应解决至关重要的I-UAV网络问题。本文认为,I-UAV网络可以分为三类,服务质量(QoS)驱动网络,体验质量(QoE)驱动的网络,以及情况感知网络。每类网络都会带来了对我国无人机任务的安全有效地实现的严重影响的新兴挑战。本文精心详细分析了这些挑战,并阐述了相应的智能方法来解决I-UAV网络问题。此外,考虑到通过与高海拔平台(HAPS)合作扩展I-UAV网络可扩展性的升高效果,本文概述了集成的HAP和I-UAV网络,并提出了相应的网络挑战和智能方法。
translated by 谷歌翻译